21世纪教育网
设计作品0
离散型随机变量的均值的概念
一般地,若 X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn=ipi为随机变量X的均值
离散型随机变量的均值的性质
若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=aE(X)+b.
证明如下:如果Y=aX+b,其中a,b为常数,X是随机变量,那么Y也是随机变量.因此P(Y=axi+b)=P(X=xi),i=1,2,3,…,n,所以Y的分布列为
Y
ax1+b
ax2+b
…
axi+b
…
axn+b
P
p1
p2
…
pi
…
pn
于是有E(Y)=(ax1+b)p1+(ax2+b)p2+…+(axi+b)pi+…+(axn+b)pn=a(x1p1+x2p2+…+xipi+…+xnpn)
转载请注明出处!本文地址:https://www.docer.com/preview/23155733
关注稻壳领福利
举报