21世纪教育网
设计作品3011331
B.mB=mA
C.mB=mA
D.mB=6mA 关键信息:碰撞前、后都在同一直线上运动 → 正碰模型 碰前白色球的动量pA=5 kg·m/s,花色球静止,碰撞后花色球B的动量pB′=4 kg·m/s → 确定初末状态 解题思路:根据碰撞遵循的三条原则,列出相应方程求解 由动量守恒定律,得pA+pB=pA′+pB′,代入数据解得pA′=1 kg·m/s;根据碰撞过程中总动能不增加,则有,代入数据解得mB≥mA;碰后两球同向运动,白色球A的速度不大于花色球B的速度,则,解得mB≤4mA;综上可得mA≤mB≤4mA,选项A正确。 (智学精选)两个小球在光滑水平面上沿同一直线、同一方向运动,球2在前,球1在后,m1=1kg,m2=3kg,v01=6m/s,v02=3m/s,当球1与球2发生碰撞后,两球的速度分别为v1,v2,将碰撞后球1的动能和动量大小分别记为E1、p1,则v1,v2,E1,p1的可能值为( )
A.v1=1.75m/s,v2=3.75m/s
B.v1=1.5m/s,v2=4.5m/s
C.E1=9J
D.p1=1kg·m/s A.如果v1=1.75m/s,v2=3.75m/s,则碰撞后的系统总动量为: p′=m1v1+m2v2=(1×1.75+3×3.75)kg·m/s=13kg·m/s,系统动量不守恒,A错误; B.如果两球发生完全弹性碰撞,由动量守恒定律得:m1v01+m2v02=m1v1+m2v2 由机械能守恒定律得:m1v012+m2v022=m1v12+m2v22, 代入数据解得:v1=1.5m/s,v2=4.5m/s,B正确; CD.两球碰撞过程中系统动量守恒,以两球的初速度方向为正方向,如果两球发生完全非弹性碰撞,由动量守恒定律得:m1v01+m2v02=(m1+m2)v,代入数据解得:v=3.75m/s 则碰撞后球1、球2
转载请注明出处!本文地址:https://www.docer.com/preview/22618114
关注稻壳领福利